GRP Enclosures aid Migration to Wireless Instrumentation Networking |

GRP Enclosures aid Migration to Wireless Instrumentation Networking

GRP Enclosures aid Migration to Wireless Instrumentation Networking

June 15, 2015  -  Intertec is seeing increased customer demand for equipment housings to contain wireless process monitoring equipment in outdoor environments. This is partly due to increased use of industrial wireless sensor network (WSN) technology, but mainly to the growing industry awareness that glass-reinforced polymer (GRP) composite material for protective enclosures is electromagnetically transparent.

Until recently, process industry take-up of WSN technology has been relatively slow, possibly because competing wireless standards have made systems designers wary of making the wrong choice. However for mainstream industrial process applications, the field has now narrowed to just two standards – WirelessHART and ISA100.11a. Both standards define secure, self-healing wireless mesh technology operating in the 2.4 GHz ISM band, using IEEE 802.15.4 standard radios. ISA100.11a systems use Internet protocols and are designed for multiple wireless communications purposes, while the simpler WirelessHART systems are primarily intended only for use with process instruments; they are also backward compatible with wired HART devices, which are used extensively within the process sector for remote data acquisition.

One of the many benefits of GRP composite material is electromagnetic transparency – it produces a wide range of frangible environmental protection cabinets and shelters for radar and instrument landing systems at airports which are designed not to reflect or interfere with radio signals. The housings are also used extensively for cellular and satellite communications applications, as well as satellite navigation systems; the GRP material causes no measurable loss of received or transmitted RF signals, so the equipment antennas can be contained within the enclosure. GRP is also ideally suited to field-based 2.4 GHz wireless sensor networks, especially for applications where external antennas are inadvisable because of their susceptibility to accidental damage.

According to Intertec’s CEO, Martin Hess, “More and more process industries are starting to deploy wireless field instrumentation, although at this stage it’s only for monitoring and diagnostics – I think that it will still be a long time before wireless is used for process control purposes. Having said that, the technology offers huge benefits for companies with large remote data acquisition needs, completely eliminating the cost and inconvenience of cables. We believe that GRP composite enclosures provide plant engineers with a future-proof path for WSN technology – even if they choose to install cabled instruments today, by selecting the right type of enclosure at the outset they will make it easy to deploy wireless instrumentation whenever they wish, without having to change the entire installation.”

A number of Intertec’s customers, as well as manufacturers of wireless process monitoring automation, have started to evaluate the electromagnetic performance of its GRP-based enclosures for housing field-based WSN equipment. Initial results are very promising: third-party tests involving a WirelessHART gateway and a WirelessHART field device, both with built-in antennas and sited in different rooms, found that when the field device was placed inside a standard GRP instrumentation enclosure it continued to function properly, with no measurable loss of signal.

The tests were conducted using a model from Intertec’s Multibox range, but the same results are likely to be obtained from any enclosures that use a similar form of construction.

Many of the leading wireless process monitoring instruments on the market, including a number of pressure, flow and level transmitters, offer the option of local (on-instrument) or remote antennas. However, if the instrument needs to be housed in some form of enclosure to protect it against a harsh environment, this choice will not be available if – as is commonly the case – the enclosure is made from a metal such as steel or aluminum; its RF shielding effect will necessitate use of a remote externally mounted antenna to secure adequate signal strength. Aside from incurring additional implementation costs, use of an external antenna also involves drilling an extra hole in the enclosure – probably in its top, which is potentially the worst place for leaks – and leaves a delicate structure open to physical impact.

GRP is inherently inert and immune to damage from most common chemicals and petrochemicals. It has a similar strength to steel, but weighs about four times less, and will not corrode in the presence of salt – which is why it is increasingly becoming the enclosure material of choice for offshore and coastal oil and gas applications. GRP also has low flammability and is self-extinguishing, as well as having a very low thermal conductivity that makes it easier to implement efficient, condensation-free enclosures.

Did you Enjoy this Article?

Check out our free e-newsletters
to read more great articles.

Subscribe Now